286. The Dipole Moments of Pyridine, Quinoline, and isoQuinoline as Vapours and as Solutes.

By A. D. Buckingham, J. Y. H. Chau, H. C. Freeman, R. J. W. Le Fèvre, D. A. A. S. Narayana Rao, and J. Tardif.

Determinations of the polarisations of the substances named in the title as vapours reveal limitations in accuracy of the conventional experimental arrangements. New measurements of the dipole moments of these liquids as solutes in light petroleum, carbon tetrachloride, or benzene show that quinoline and isoquinoline conform within $\pm 3 \%$ to an empirical equation advanced by Buckingham and Le Fèvre, the second liquid doing so more satisfactorily than the first. The $\mu_{\text {soln. }} / \mu_{\text {gas }}$ ratios found for pyridine are notably higher than expected. This behaviour may be attributed in part to association with the solvents: thus pyridine and carbon tetrachloride could tend to form a quaternary polar complex; alternatively ${ }_{\mathbf{A}} P_{\mathrm{C}_{\mathrm{B}} \mathrm{H}_{\mathrm{B}} \mathrm{N}}$ might be increased as an effect of solvation. In either case the moment-and hence the quotient $\mu_{\text {soln. }} / \mu_{\text {gas }}-$ recorded by use of the refractivity method applied to solutions would appear to be larger than that forecast by previously adequate relations.
The measurements here recorded, commenced several years ago, were to provide critical data for the comparison of various equations by which the "true" or gas-phase dipole moments of molecules could be predicted from experiments on solutions. It seemed that three solutes-pyridine, quinoline, and isoquinoline-offered interesting differences in shape-factors although their polarities were roughly the same.

As no figures for the three "gas" moments were available, determinations of the polarisations of the vapours at temperatures from 90° to 315° were undertaken. The observations listed below were made by several of the authors at widely separated intervals.

The order of their accuracy is not so high as it was hoped to achieve. The technical difficulties incurred in making the polarisation measurements at high temperatures, and the uncertainties inherent in the calibration of the apparatus, are considered in detail below.

In addition, earlier determinations of the electric moments of the three substances in benzene have been supplemented; and new ones have been made in light petroleum and carbon tetrachloride. These results are summarised in Table 1.

Table 1. Dipole moments and $\mu_{\text {soln./gas }}$ ratios for pyridine, quinoline, and isoquinoline.*

Substance	$\mu_{1 . \mathrm{p} .} \dagger$	$\mu \mathrm{COI}_{4}$	$\mu_{\mathrm{C}_{6} \mathrm{H}_{6}}$	$\mu_{\text {gas }}$	$\mu_{\text {l.p. }} / \mu_{\text {gas }}$	$\mu_{\text {CClis }} / \mu_{\text {gas }}$	$\mu_{\mathrm{C}_{6} \mathrm{H}_{8} / \mu_{\text {gas }}}$
Pyridine	2.27	$2 \cdot 37$	$2 \cdot 25$	2.23 (0.02)	1.02 (0.02)	1.06 (0.02)	1.01 (0.02)
Quinoline	$2 \cdot 17$	$2 \cdot 27$	$2 \cdot 24$	2.29 (0.05)	0.95 (0.06)	0.99 (0.06)	0.98 (0.06)
isoQuinoline	$2 \cdot 60$	$2 \cdot 65$	$2 \cdot 61$	2.73 (0.03)	0.95 (0.04)	0.97 (0.04)	0.96 (0.04)

* Figures in parentheses following $\mu_{\text {gas }}$ are standard deviations calculated from observations. Estimates of the standard deviations of the quotients have been made by assuming those of the solution moments to be $\pm 1 \%$ of the values tabulated.
\dagger "1.p." = light petroleum.

Experimental

Polarisations of Vapours.-For the vapours of pyridine, quinoline, and isoquinoline we used the high-temperature oven-Franklin oscillator-wavemeter combination. ${ }^{1}$ For one series of measurements on pyridine, the apparatus was calibrated with sulphur dioxide. The quantity $x^{\prime}=(\partial C / p)_{p \rightarrow 0}$ for this substance at any temperature was obtainable from an experimental curve, $x^{\prime}=(241 \cdot 15 / T-0.2095)$, and the polarisation ${ }^{2} P_{\mathrm{so}_{2}}=10.9+16160 / T$.

For the other two substances, and for a second sequence of measurements on pyridine, benzene was taken as the standard gas. Using dry air with ${ }_{T} P=4.344$ c.c. as a primary standard, ${ }^{3}$ we found the average polarisation of benzene vapour at those temperatures to be 27.2 ± 0.2 c.c. The standard deviations of the constants in the Debye equations were computed. ${ }^{4}$

Table 2. Polarisations of vapours.

Temp. (${ }^{\circ} \mathrm{K}$)	x / x^{\prime}	No. of obsns.	Press. range (cm. Hg)	$\begin{gathered} P \\ \text { (c.c.) } \\ \text { (msd.) } \end{gathered}$	$\begin{gathered} P \\ \text { (c.c.) } \\ \text { (calc.) } \end{gathered}$	μ^{*}	Temp. (${ }^{\circ} \mathrm{K}$)	x / x^{\prime}	No. of obsns.	$\begin{aligned} & \text { Press. } \\ & \text { range } \\ & (\mathrm{cm} . \mathrm{Hg}) \end{aligned}$	$\begin{gathered} P \\ \text { (c.c.) } \\ \text { (msd.) } \end{gathered}$	$\begin{gathered} P \\ \text { (c.c.) } \\ \text { (calc.) } \end{gathered}$	μ^{*}
Pyridine \dagger													
414.7	1.868	13	16-60	$93 \cdot 2$	$93 \cdot 4$	-	539	1.866	15	18-60	76.3	76•1	
428.1	1.847	14	15-62	$89 \cdot 8$	91.0	-	562	1.841	15	19-62	$73 \cdot 1$	$73 \cdot 7$	-
$477 \cdot 4$	1.902	19	14-62	$85 \cdot 2$	83.5	-	588	1.831	19	15-59	$70 \cdot 3$	$71 \cdot 3$	
518	1-891	16	20-61	79.6	78.4								
whence $P=(18.4 \pm 3.6)+(31,090 \pm 1630) / T ; \mu=2.26 \pm 0.06 \mathrm{~d}$.													
Pyridine \ddagger ($R_{\mathrm{D}}=24.1 \mathrm{c.c}$) $) \quad$ Quinoline $\ddagger\left(R_{\mathrm{D}}=41.9 \mathrm{c.c}\right.$)													
365	$3 \cdot 863$	5	6-13	105.1	$104 \cdot 7$	$2 \cdot 20$	482	3.945	10	5-7	$107 \cdot 3$	$110 \cdot 1$	$2 \cdot 27$
431	$3 \cdot 374$	5	6-11	91.8	$92 \cdot 0$	$2 \cdot 19$	498	3.961	11	7-8	$107 \cdot 8$	$107 \cdot 1$	$2 \cdot 32$
439	$3 \cdot 319$	6	6-11	$90 \cdot 3$	$90 \cdot 7$	$2 \cdot 18$	499	3.999	9	3-7	108.8	106.9	$2 \cdot 34$
499	3.036	6	6-8	$82 \cdot 6$	82.5	$2 \cdot 19$	521	3.832	11	5-10	$104 \cdot 4$	103.0	$2 \cdot 31$
542.5	2.864	5	14-21	77.9	$77 \cdot 6$	$2 \cdot 19$	572	$3 \cdot 447$	15	4-9	93.8	$95 \cdot 1$	$2 \cdot 21$

whence $P=(22.0 \pm 1.3)+(30,175 \pm 690) / T ; \mu=2.23 \pm 0.02 \mathrm{D}$ (For pyridine). Debye equation: $P=(14 \cdot 2 \pm 17 \cdot 7)+(46,270 \pm 9100) / T ; \mu=2 \cdot 8 \pm 0 \cdot 3 \mathrm{D}$ (For quinoline). Refractivity method : $\mu=2.29 \pm 0.05 \mathrm{D}$ (For quinoline).

isoQuinoline $\ddagger\left(R_{\mathrm{D}}=41.5 \mathrm{ccc}.\right)$												
448	$5 \cdot 246$	9	1-2	$142 \cdot 6$	$144 \cdot 3 \quad 2 \cdot 73$	513	4.774	11	4-8	129.9	$130 \cdot 0$	$2 \cdot 73$
469	$5 \cdot 247$	9	4-6	142.7	$139 \cdot 22 \cdot 79$	513	4.737	9	1-9	128.8	130.0	$2 \cdot 71$
492	4.980	6	4-7	135.5	$134 \cdot 2 \quad 2 \cdot 76$	547	$4 \cdot 667$	11	5-10	126.9	123.8	$2 \cdot 77$
494	$4 \cdot 800$	8	1-3	$130 \cdot 6$	$133 \cdot 72 \cdot 69$	565	$4 \cdot 459$	11	8-13	121.3	$120 \cdot 9$	2.71
497	4.974	12	5-8	$135 \cdot 3$	133.12 .76	567	$4 \cdot 368$	11	7-20	118.8	$120 \cdot 9$	$2 \cdot 68$

Debye equation: $P=(31 \cdot 6 \pm 32 \cdot 6)+(50,650 \pm 16,540) / T ; \mu=2.9 \pm 0.5 \mathrm{D}$.
Refractivity method : $\mu=2.73 \pm 0.03 \mathrm{D}$.

* By refractivity method. $\quad \dagger$ Standard vapour: $\mathrm{SO}_{2} . \quad \ddagger$ Standard vapour : benzene.
${ }^{1}$ Freeman, Le Fèvre, Rao, and Ross, $J ., 1955,3840$.
${ }^{2}$ Le Fèvre, Ross, and Smythe, $J_{\text {, }}$ 1950, 267.
${ }^{3}$ Le Fèvre, " Dipole Moments," MMethuen, London, 3rd edn., 1953, p. 45.
${ }^{4}$ Cf., e.g., Youden, Analyt. Chem., 1947, 19, 946.

The results are shown in Table 2. For pyridine, the two series of determinations gave Debye equations which were compatible with each other within the standard errors of their A and B terms. The measurements with benzene as standard were more self-consistent and hence the value $\mu=2.23 \pm 0.02 \mathrm{D}$ will be taken for the true dipole moment of pyridine.

From the experimental standpoint, the temperature ranges over which the measurements could be made were limited by the b. p.s of the substances on the one hand and by the instability of vacuum-greases, glass diaphragms, and electric connections on the other. For quinoline and isoquinoline, these conditions restricted measurements to ranges of ca. 100° : extrapolation from such short temperature ranges gave standard deviations of ${ }_{\mathrm{D}} P$, in the Debye equations,

Table 3. Dielectric constants and densities of solutions.

$10^{5} w_{2}$	ε_{25}	d_{4}^{26}	$10^{5} w_{2}$	ε_{25}	d_{4}^{25}	$10^{5} w_{2}$	ε_{25}	d_{4}^{25}
Pyridine in light petroleum								
1043	1.9805	$0 \cdot 6981$	1883	$2 \cdot 0212$	0.7004	3940	2-1307	0.7037
1248	1.9913	$0 \cdot 6982$	1958	$2 \cdot 0273$	$0 \cdot 6995$	4247	-	$0 \cdot 7041$
1411	$2 \cdot 0017$	$0 \cdot 6985$	2444	$2 \cdot 0522$	$0 \cdot 7006$			
Pyridine in carbon tetrachloride								
543	2-3024	1.57955	1127	$2 \cdot 3845$	1.57429	1858	$2 \cdot 4843$	1.56755
1002	$2 \cdot 3658$	1.57523	1702	$2 \cdot 4641$	1.56882	2029	$1 \cdot 5078$	1.56554
Pyridine in benzene								
993	$2 \cdot 3420$	0.87384	2891	$2 \cdot 4749$	0.87684	6081	$2 \cdot 6982$	$0 \cdot 88019$
1361	$2 \cdot 3660$	0.87529	4988	$2 \cdot 6217$	$0 \cdot 87904$	6935	$2 \cdot 7579$	$0 \cdot 88108$
1877	$2 \cdot 4039$	0.87578						
Quinoline in light petroleum								
931	1.9583	$0 \cdot 6982$	1581	1.9767	$0 \cdot 6999$	3201	$2 \cdot 2076$	0.7042
1087	1.9626	0.6985	1965	1.9896	$0 \cdot 7008$	3575	$2 \cdot 0409$	0.7052
1151	1.9659	$0 \cdot 6986$	2625	2.0109	$0 \cdot 7027$	3893	$2 \cdot 0507$	0.7061
Quinoline in carbon tetrachloride								
859	$2 \cdot 2986$	1-57829	1261	$2 \cdot 3313$	1.57575	1663	2.3645	1.57293
892	$2 \cdot 3011$	1.57818	1422	$2 \cdot 3430$	1.57487	1789	$2 \cdot 3738$	1.57184
Quinoline in benzene								
561	$2 \cdot 2980$	0.8747	1875	2.3585	$0 \cdot 8773$	3106	$2 \cdot 4161$	0.8794
797	2-3070	0.8755	1952	$2 \cdot 3585$	0.8775	3169	$2 \cdot 4165$	$0 \cdot 8799$
898	$2 \cdot 3143$	$0 \cdot 8753$	1954	$2 \cdot 3656$	$0 \cdot 8776$	3506	$2 \cdot 4092$	0.8802
1041	$2 \cdot 3208$	$0 \cdot 8756$	2926	$2 \cdot 4055$	$0 \cdot 8794$	3557	$2 \cdot 4353$	0.8805
isoQuinoline in light petroleum								
914	1.9705	0.6983	1946	2.0118	0.7010	4230	$2 \cdot 1103$	0.7073
1511	1.9943	$0 \cdot 6998$	2133	2.0180	0.7015	4293	$2 \cdot 1096$	0.7074
1813	$2 \cdot 0065$	0.7006	2150	2.0185	$0 \cdot 7016$	5261	2.1539	0.7100
isoQuinoline in carbon tetrachloride								
797	$2 \cdot 3144$	1.58398	1261	$2 \cdot 3660$	1.58371	1659	$2 \cdot 4104$	1.57352
853	$2 \cdot 3206$	1.58394	1365	$2 \cdot 3774$	1.57594	2430	$2 \cdot 4951$	1.56806
isoQuinoline in benzene								
610	2-3089	$0 \cdot 87504$	896	2.3264	0.87558	1017	$2 \cdot 3338$	0.87588
780	$2 \cdot 3204$	0.87538	989	2-3320	0.87579	2233	$2 \cdot 4087$	$0 \cdot 87830$

Table 4. Calculation of results from solutions.

Solute	Solvent	$\alpha \varepsilon_{1}$ (mean)	β (mean)	${ }_{\infty} \mathrm{P}_{2}$ (c.c.)	$R_{\text {D }}$ (c.c.)	μ (D)
Pyridine	L. p.	4.99	0.284	$129 \cdot 3$	24-1	$2 \cdot 27$
," .	CCl_{4}	13.84	-0.583	138.8	,,	$2 \cdot 37$
Quin	$\mathrm{C}_{6} \mathrm{H}_{6}$	6.99	0.117	127.8		$2 \cdot 2{ }_{5}$
Quinoline	L. p .	$3 \cdot 06_{5}$	0.367	138.3	41.9	$2 \cdot 17$
", ..	CCl_{4}	$8 \cdot 25$	-0.443	$147 \cdot 1$	"	$2 \cdot 27$
	$\mathrm{C}_{6} \mathrm{H}_{6}$	$4 \cdot 48$	0.214	$144 \cdot 4$	41.5	$2 \cdot 2{ }^{2}$
isoQuinoline	L. p.	4.22	0.382 -0.424	179.3	41.5	${ }^{2 \cdot 6}{ }^{2} 6$
.,	$\mathrm{CCl}_{4} \mathrm{H}_{6}$	11.01 6.06	-0.424 0.233	$184 \cdot 4$ 181.0	"	$2 \cdot 65$ $2 \cdot 61$

which exceeded the numerical values of ${ }_{\mathrm{D}} P$ obtained. For these compounds, the dipole moments were calculated via the orientation polarisations, taken as (${ }_{\mathrm{T}} P-R_{\mathrm{D}}$).

Solution Measurements.-A new apparatus for the measurement of the dielectric constants of liquids has been constructed to replace those described in $J ., 1948,1949$, and $J ., 1953,1626$. Circuit details are shown in the Figure. The arrangement is a less sensitive version of that developed for gases by Le Fèvre, Ross, and Smythe (ref. 2, Fig. 3). The test cells and standard (Sullivan 50-250 $\mu \mu \mathrm{F}$) variable condenser C, used formerly, have been retained. The reference

Table 5. Comparison of present data with those from earlier literature.

References. (a) Lange, Z. Physik, 1925, 33, 169. (b) Bergmann, Engel, and Meyer, Ber., 1932, 65, 446. (c) Rau and Narayanaswamy, Z. phys. Chem., 1934, B, 26, 23. (d) Goethals, Rec. Trav. chim., 1935, 54, 299. (e) Middleton and Partington, Nature, 1938, 141, 516. (f) Leis and Curran, J. Amer. Chem. Soc., 1945, 67, 79. (g) Present work. (h) Rolinski, Physikal. Z., 1928, 29, 658. (i) Le Fèvre and Smith, $J ., 1932$, 2810. (j) Le Fèvre and Le Fèvre, $J ., 1935,1470$. (k) Topchiev, Yakshin, and Shindel, Chem. Abs., 1943, 37, 290.
$?=$ Not stated in source quoted.

* = Estimated by present authors.
$\dagger=$ Complete concentration range from $0-100 \%$ covered.
point is the sharp minimum of a current " crevasse." ${ }^{5}$ For this reason it is desirable to choose by trial a mounted quartz crystal which exhibits one " crevasse" which is notably deeper than others usually accompanying it. Performance has proved most satisfactory, drift being negligible during several hours.

Observations are tabulated under the usual headings in Table 3. For the three solvents, the necessary physical properties are listed below Table 6. Table 4 shows the calculations of the moments in solution, and Table 5 summarises data from the literature.

Materials.-B.D.H. pyridine was purified via the zinc chloride double salt (twice recrystallised from alcohol), and distilled over sodium hydroxide pellets just before use; it had b. p. 115- $115.5^{\circ} / 760 \mathrm{~mm}$ (Biddiscombe, Coulson, Handley, and Herington ${ }^{6}$ give b. p. $115 \cdot 256^{\circ} / 760 \mathrm{~mm}$.; cf. also Heap, Hones, Speakman ${ }^{7}$). Quinoline (B.D.H. "synthetic '") was treated with a diazotising mixture ${ }^{8}$ and steam-distilled to remove all volatile material. The mixture was then made alkaline and again steam-distilled. The quinoline after separation was dried (KOH) and fractionated through a $24^{\prime \prime}$ column, packed with Fenske helices, under adaabatic conditions. Collection for use was made at $140-143^{\circ} / c a .50 \mathrm{~mm}$. or $124-125^{\circ} / 25-26$ mm . isoQuinoline (B.D.H.) was solid at room temperature; it was twice fractionated through the column used for quinoline, the portion with b. p. $117^{\circ} / 15 \mathrm{~mm}$. being retained. Benzene and carbon tetrachloride were purified by methods often described previously. ${ }^{9}$ Light petroleum, b. p. ca. 80°, was used without further treatment other than drying with sodium.

Discussion

In order to test the several empirical relations between $\mu_{\text {soln. }}$ and $\mu_{\text {gas }}$, scale drawings were made as described before. ${ }^{10}$ They were based on the published dimensions of pyridine

(I)

(II)

(III)
and naphthalene. ${ }^{11}$ The molecular dimensions, together with the assumption ${ }^{12}$ that the molecular resultant moments act as indicated in (I), (II), and (III), yielded the geometrical part of the data in Table 6, which shows the ratios $\mu_{\text {soln }} / \mu_{\text {gas }}$ predicted by the relations of Barclay and Le Fèvre and of Buckingham and Le Fèvre. ${ }^{10}$ Ross and Sack's equation ${ }^{13}$ has also been applied since this seems the most satisfactory yet produced of those which rest upon a priori theory; ${ }^{14}$ the internal field functions ζ have been read from Osborn's graphs of demagnetising factors. ${ }^{15}$ Comparison with the predictions of $\mu_{\text {soln }} / \mu_{\text {gas }}$ in Table 6 shows the Buckingham-Le Fèvre formula to be applicable within $\pm 3 \%$ to quinoline and isoquinoline; the three cases involving pyridine display ratios from 6 to 14% larger than those forecast.

We have accordingly considered whether our figures for $\mu_{\text {gas }}$ of pyridine are too low, or those for $\mu_{\text {soln }}$ too high. The former is improbable : ${ }_{\mathrm{D}} P$ usually exceeds R_{D}, so that the use of the correct ${ }_{\mathrm{D}} P$'s-were they more satisfactorily known-would yield smaller values for $\mu_{\text {gus }}$ than those of Table 2. We note in this connection that two determinations of $\mu_{\text {pyridine }}$ by Stark splitting have been recorded as 2.19 and 2.09 D. ${ }^{16}$

[^0]Alternatively, our estimates of $\mu_{\text {soin. }}$ may be too high. It is seen from Table 5 that the $\infty\left(P_{2}\right)$'s now presented are greater than those of previous authors: this could in part be due to the method of extrapolation used ${ }^{17}$ which often leads to higher figures at infinite dilution

Table 6. Predicted values of the ratio $\mu_{\text {soln. }} / \mu_{\text {gas }}$.

Solute	Pyridine			Quinoline			isoQuinoline		
A	$6 \cdot 1$			$6 \cdot 1$			7.7		
B Geom. factors ...	$6 \cdot 2$			$8 \cdot 7$			$7 \cdot 3$		
C	$2 \cdot 9$			2.9			2.9		
$\left(n_{2}\right)_{\mathrm{D}}^{25} \ldots \ldots \ldots \ldots \ldots \ldots$	1.5074			1.6247			1.6229		
Solvent	1.p.	CCl_{4}	$\mathrm{C}_{6} \mathrm{H}_{8}$	1.p.	CCl_{4}	$\mathrm{C}_{6} \mathrm{H}_{6}$	1.p.	CCl_{4}	$\mathrm{C}_{8} \mathrm{H}_{6}$
$\mu_{\mathrm{s}} / \mu_{\mathrm{g}}{ }^{10 a}$	0.954	0.928	0.918	0.995	0.982	0.975	0.963	0.943	0.934
$\mu_{3} / \mu_{\mathrm{g}}{ }^{13}$..............	0.952	0.918	0.912	0.994	0.966	0.961	0.944	0.908	0.903
$\mu_{s} / \mu_{\delta}{ }^{100}$..............	0.962	0.934	$0 \cdot 920$	0.979	0.969	0.964	0.984	0.968	0.956
$\mu_{\mathrm{s}} / \mu_{\mathrm{g}}$ (Exptl.) $\ldots . .$.	1.02	1.06	1.01	0.95	0.99	0.98	0.95	0.97	0.96
	± 0.03	± 0.03	± 0.03	± 0.06	± 0.06	± 0.06	± 0.04	± 0.04	± 0.04

For the above, where necessary, the following properties of the solvents at 25° have been used :

Solvent	d_{4}^{25}	$\left(n_{1}{ }^{2}\right)$ D	ε_{1}	$\left(\varepsilon_{1}-1\right) /\left(\varepsilon_{1}+2\right)$
Light petroleum	$0 \cdot 6959$	1.9182	1.9300	$0 \cdot 2366$
Carbon tetrachloride	1.58454	$2 \cdot 1243$	$2 \cdot 2270$	$0 \cdot 2903$
Benzene	0.87378	$2 \cdot 2419$	$2 \cdot 2725$	$0 \cdot 2978$

than does the older (and less certain) graphical procedure; in this connection it is relevant that the actual experimental observations by Le Fèvre and Smith are, at their concentrations, concordant with those now found.

Real exaltations of apparent moments in solution could arise from at least two causes : association of solute and solvent giving a polar complex, or solute-solvent interactions causing the atomic polarisation of the dissolved molecule to be greater than that of the gaseous molecule. Partington and Middleton ${ }^{18}$ reported, without practical details, the moments of pyridine in carbon tetrachloride and benzene as 2.33 and 2.26 D , respectively; in other media results were lower (cf. Table 5) and the suggestion was made that pyridine forms an adduct with carbon tetrachloride; evidence was cited that this substance undergoes some kind of association with benzene and toluene (in which the apparent moment was given as 2.26 D); however, the fact (Table 6) that $\mu_{\text {soln. }} / \mu_{\text {gas }}$ (exptl.) is 1.02 in light petroleum, 1.06 in carbon tetrachloride, and 1.01 in benzene does not offer much support for a hypothesis that a polar complex $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CCl}_{4}$ is formed. Nevertheless solvation in general might alter the force constants for the various bending modes of the dissolved molecule (stretching frequencies seem to be reduced by solvents, cf. Bayliss, Cole, and Little ${ }^{19}$) and thus (cf. Le Fèvre and Rao ${ }^{20}$) affect the atomic contribution ${ }_{\Delta} P$ to the distortion polarisation ${ }_{\mathrm{D}} P$. The literature contains much evidence ${ }^{21}$ which suggests that atom polarisations of polar species may sometimes be unexpectedly greater in solutions than in gases. In the particular case of pyridine, ${ }_{\mathrm{p}} P_{\text {pyridine }}=24.1$ c.c. is likely to be an underestimate: since pyridine possesses two polar links ($\mathrm{C}-\mathrm{N}$) and benzene none, ${ }_{A} P_{\text {pyridine }}$ should exceed ${ }_{\mathrm{A}} P_{\text {benzene }}$, which ${ }^{20}$ is ca. 1 c.c. From Goethals's finding ${ }^{22}$ that P minus R for 4:4'-dipyridyl is 6.9 ± 2.0 c.c., a reasonable value for ${ }_{A} P_{\text {pyriaine }}$ might well lie between 3.5 and 4.5 c.c. If this is added to $R_{\infty}(23 \cdot 3$ c.c. calculated from refractivities given in LandoltBörnstein's " Tabellen," 1912 edn.), then ${ }_{\mathrm{D}} P$ becomes $26 \cdot 8-27.8$ c.c.

This is not far from the value $1 \cdot 1 R_{\mathrm{D}}=26.5$ c.c. assumed by Leis and Curran. ${ }^{23}$ Further, from the temperature dependence of the polarisations of solutions of pyridine in benzene, Rau and Narayanaswamy ${ }^{24}$ calculated an A term of $31 \cdot 3 \pm 1 \cdot 2$ c.c. Use of this figure, in

[^1]conjunction with ${ }_{\infty} P_{2}=127.8$ c.c. (Table 5), leads to moments of $2.17 \pm 0.01 \mathrm{D}$, which do not exceed $\mu_{\mathrm{gas}}=2.19 \mathrm{D}$ obtained via the refractivity method (with $R_{\mathrm{D}}=24.1$ c.c.) or $\mu_{\mathrm{gas}}=2.23 \mathrm{D}$, via the vapour polarisation-temperature relation (see Table 2). It is relevant that Rau and Narayanaswamy found that the A terms for quinoline-benzene and isoquinoline-benzene systems were much closer to R_{D} than was that for pyridine.

We conclude, therefore, that the apparent alterations of polarity by solution of these bases, particularly of pyridine, may be due to causes other than the physical solvent effects for which the equations used in Table 6 were devised.

Finally, we have considered the moments deducible from the ε_{25} and d_{4}^{25} of the same heterocycles in the liquid state. ${ }^{25}$ These are set out in Table 7; the dielectric constants

Table 7. Calculations of $\mu_{\text {gas }}$ from data on the pure liquids.

	ε_{25}	d_{4}^{25}	$\begin{gathered} \text { T } P_{\text {liquudd }} \\ \text { (c.c.) } \end{gathered}$	$\mu_{\text {liquld }}$	$\begin{gathered} \mu_{\text {gas }} \\ \text { (Onsager) } \end{gathered}$	(Buckingham and Le Fèvre)	$\underset{(\text { exptl.) }}{\mu_{\mathrm{gaa}}}$
Pyridine	12.01	0.978	63.5	1.39	2-1	2.5	$2 \cdot 2$
Quinoline	8.704	1.090	$85 \cdot 3$	$1 \cdot 46$	1.9	$2 \cdot 1$	$2 \cdot 3$
isoQuinoline	10.71	1.099	$89 \cdot 8$	$1 \cdot 54$	$2 \cdot 2$	$2 \cdot 7$	$2 \cdot 7$

are close to those given in the "Table of Dielectric Constants of Pure Liquids." ${ }^{26}$ Refractive indexes and shape factors are from Table 6. Under $\mu_{\text {llquid }}$ are the apparent moments computed from the differences between the total polarisations, $(\varepsilon-1) M /(\varepsilon+2) d$, and the molecular refractions of the liquids. The values of $\mu_{\text {gas }}$ calculated by Onsager's equation ${ }^{27}$ are compared with those derived from $\mu_{\text {liquid }}$ by use of Buckingham and Le Fèvre's empirical relation (5)..$^{10 c}$ The results favour the latter expression in two cases.

The authors acknowledge with gratitude financial assistance from the University Research Committee, Imperial Chemical Industries (Australia and New Zealand) Ltd., and from the Australian Atomic Energy Commission. D.A.A.S. Narayana Rao is grateful to the Commonwealth Government of Australia for a Research Fellowship awarded under the Colombo Plan.

University of Sydney, N.S.W., Australia.
[Received, September 6th, 1955.]

[^2]
[^0]: ${ }^{5}$ See ref. 3, p. 37.
 © Biddiscomb, Coulson, Handley, and Herington, J., 1954, 1962.
 7 Heap, Hones, and Speakman, J. Amer. Chem. Soc., 1921, 43, 1936.
 ${ }^{8}$ Clarke and Davis, Org. Synth., Coll. Vol. I, 2nd edn., p. 478.
 ${ }^{9}$ See, e.g., Le Fèvre, ref. 3, p. 45.
 ${ }^{10}$ (a) Barclay and Le Fèvre, J., 1950, 556 ; (b) Angyal, Barclay, and Le Fèvre, J., 1950, 3370 ; (c) Buckingham and Le Fèvre, J., 1952, 1932.
 ${ }_{11}$ Schomaker and Pauling, J.' Amer. Chem. Soc., 1939, 61, 1769 ; Mathieson, Robertson, and Sinclair, Acta Cryst., 1950, 3, 245, 257.
 ${ }^{12}$ Le Fèvre and Le Fèvre, $J ., 1935,1470$.
 13 Ross and Sack, Proc. Phys. Soc., 1950, 63, 693.
 ${ }^{14}$ Cf. Le Fèvre, ref. 3, Chap. III.
 15 Osborn, Phys. Rev., 1945, 67, 351.
 ${ }^{16}$ De More, Wilcox, and Goldstein, J. Chem. Phys., 1954, 22, 876.

[^1]: ${ }^{17}$ Cf. Le Fèvre, Trans. Faraday Soc., 1950, 46, 1.
 18 Partington and Middleton, Nature, 1938, 141, 516.
 ${ }^{19}$ Bayliss, Cole, and Little, Austral. J. Chem., 1955, 8, 26.
 ${ }^{20}$ Le Fèvre and Rao, Austral. J. Chem., 1954, 7, 135; 1955, 8, 39.
 21 E.g., Smythe and Walls, J. Amer. Chem. Soc., 1930, 52, 2234; Morgan and Lowry, J. Phys. Chem., 1930, 34, 2385; Jenkins, Trans. Favaday Soc., 1934, 30, 739; Sugden, ibid., p. 734.
 ${ }_{22}$ Goethals, Rec. Trav. chim., 1935, 54, 299.
 ${ }_{24}^{23}$ Leis and Curran, J. Amer. Chem. Soc., 1945, 67, 79.
 ${ }_{2}{ }^{4}$ Rau and Naraswamy, Z. phys. Chem., 1934, B, 26, 23.

[^2]: 25 Le Fèvre, J., 1935, 773.
 ${ }^{26}$ Nat. Bur. Stands. Circular 514, Washington, 1951.
 27 Onsager, J. Amer. Chem. Soc., 1936, 58, 1486.

